\square Code No. : 13664 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with $A++$ Grade
B.E. (I.T.) III-Semester Main \& Backlog Examinations, Jàn./Feb.-2024

Digital Electronics and Logic Design
Time: $\mathbf{3}$ hours
Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20$ Marks $)$

Q. No.	Stem of the question	M	L	CO	PO
1.	Convert the following numbers into decimal a. $(4310)_{s}$ b. (198) 12	2	1	1	1
2.	If $(14)_{x}=7$ in a particular number system, determine the base of the number system.	2	1	1	1
3.	Draw the logic circuit diagram of a 2×1 Multiplexer.	2	2	2	1
4.	Derive the truth table of a full adder circuit.	2	1	2	1
5.	Draw the circuit diagram of a JK flip flop.	2	2	3	1
6.	What is the need for Master-Slave flipflops?	2	1	3	1
7.	List the basic design steps for synchronous sequential circuit.	2	1	4	1
8.	What is state equivalence principle?	2	1	4	1
9.	What is VHDL?	2	1	5	1
10.	Give the importance of Process keyword and the sensitivity list of the process keyword used in VHDL. $\text { Part-B }(5 \times 8=40 \text { Marks })$	2	1	5	1
11. a)	Given two binary numbers $X=1010100 \quad Y=1000011$ perform the subtraction $\mathrm{X}-\mathrm{Y}$ and $\mathrm{Y}-\mathrm{X}$ by using 2's complements.	4	2	1	1
b)	Simplify the Boolean function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(1,3,7,11,15)$ which has the don't care conditions $\mathrm{d}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,2,5)$	4	2	1	1
12. a)	Implement the Boolean functions $\mathrm{F} 1=\mathrm{AB}+\mathrm{AC}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ and $\mathrm{F} 2=(\mathrm{AC}$ $+B C$)' using a Programmable logic array (PLA).	4	3	2	3
b)	Implement the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,11,12,13,14,15)$ using a multiplexer by considering $\mathrm{A}, \mathrm{B}, \mathrm{C}$ as selection lines of the multiplexer.	4	3	2	3
13. a)	What is characteristic equation of a flip flop? Derive the characteristic equation of a J K flip flop.	4	2	3	2
b)	Convert a JK flip flop to a T flip flop.	4	2	3	2

14. a) Analyze the following clocked sequential circuit shown below:

4	3	4	2
4	2	4	1
4	3	4	1
4	2	4	1
4	3	1	1
4	3	5	3
4	3	3	2
4	3	4	3
4	4	5	3

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	20%
ii)	Blooms Taxonomy Level -	35%
iii)	Blooms Taxonomy Level - 3 \& 4	45%

